Control of cortical contractility during cytokinesis.

نویسندگان

  • Michael Werner
  • Michael Glotzer
چکیده

Cleavage furrow formation in animal cells results from a local increase in cortical contractility. During anaphase, the spindle contains, in addition to astral arrays of microtubules, a set of bundled microtubules known as the central spindle. Each of these populations of microtubules, the astral arrays and the central spindle bundles, is sufficient to direct cleavage furrow formation, yet in wild-type situations these sets of microtubules co-operate to induce furrow formation at the same site, between the segregating chromosomes. These pathways have distinct genetic requirements that reflect their differential control of cortical actomyosin. We review our current understanding of the molecular mechanisms of furrow formation, with particular emphasis on the central spindle-independent pathway.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

14-3-3 Coordinates Microtubules, Rac, and Myosin II to Control Cell Mechanics and Cytokinesis

BACKGROUND During cytokinesis, regulatory signals are presumed to emanate from the mitotic spindle. However, what these signals are and how they lead to the spatiotemporal changes in the cortex structure, mechanics, and regional contractility are not well understood in any system. RESULTS To investigate pathways that link the microtubule network to the cortical changes that promote cytokinesi...

متن کامل

A global, myosin light chain kinase-dependent increase in myosin II contractility accompanies the metaphase-anaphase transition in sea urchin eggs.

Myosin II is the force-generating motor for cytokinesis, and although it is accepted that myosin contractility is greatest at the cell equator, the temporal and spatial cues that direct equatorial contractility are not known. Dividing sea urchin eggs were placed under compression to study myosin II-based contractile dynamics, and cells manipulated in this manner underwent an abrupt, global incr...

متن کامل

Plastin increases cortical connectivity to facilitate robust polarization and timely cytokinesis

The cell cortex is essential to maintain animal cell shape, and contractile forces generated within it by nonmuscle myosin II (NMY-2) drive cellular morphogenetic processes such as cytokinesis. The role of actin cross-linking proteins in cortical dynamics is still incompletely understood. Here, we show that the evolutionarily conserved actin bundling/cross-linking protein plastin is instrumenta...

متن کامل

Interactions between Myosin and Actin Crosslinkers Control Cytokinesis Contractility Dynamics and Mechanics

INTRODUCTION Contractile networks are fundamental to many cellular functions, particularly cytokinesis and cell motility. Contractile networks depend on myosin-II mechanochemistry to generate sliding force on the actin polymers. However, to be contractile, the networks must also be crosslinked by crosslinking proteins, and to change the shape of the cell, the network must be linked to the plasm...

متن کامل

Dual role for microtubules in regulating cortical contractility during cytokinesis.

Microtubules stimulate contractile-ring formation in the equatorial cortex and simultaneously suppress contractility in the polar cortex; how they accomplish these differing activities is incompletely understood. We measured the behavior of GFP-actin in mammalian cells treated with nocodazole under conditions that either completely eliminate microtubules or selectively disassemble astral microt...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochemical Society transactions

دوره 36 Pt 3  شماره 

صفحات  -

تاریخ انتشار 2008